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a b s t r a c t

There has been an important emergence of applications in which data arrives in an
online time-varying fashion (e.g. computer network traffic, sensor data, web searches, ATM
transactions) and it is not feasible to exchange or to store all the arriving data in traditional
database systems to operate on it. For this kind of applications, as it is for traditional
static database schemes, density estimation is a fundamental block for data analysis. A
novel online approach for probability density estimation based on wavelet bases suitable
for applications involving rapidly changing streaming data is presented. The proposed
approach is based on a recursive formulation of the wavelet-based orthogonal estimator
using a slidingwindow and includes an optimised procedure for reevaluating only relevant
scaling and wavelet functions each time new data items arrive. The algorithm is tested and
compared using both simulated and real world data.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

Traditional database and data processing systems are based on the storage and analysis of static records which generally
have no predefined notion of time (Golab and Ozsu, 2003). In those models, conceived as fixed static data archives, data take
the form of persistent relations that require persistent data storage as well as complex querying operations (Babcock et al.,
2002; Golab and Ozsu, 2003). Recently, a new class of applications has emerged in which information occurs in the form of
a sequence and a large amount of data is generated at a rapid rate; notable examples are: sensor networks, network traffic
analysis, financial tickers, web clicks, transaction log analysis, etc. What is common in all these particular applications is
that data arrive in a continuous, rapid and time varying fashion and an immediate processing and analysis of large transient
data streams is required. In order to manage the issues of this rapidly changing data, new data model paradigms have been
introduced in the literature; see for example the work of Babcock et al. (2002), Golab and Ozsu (2003) and Domingos and
Hulten (2003). These new data models, referred by Babcock et al. (2002) as data stream models, are basically founded on
the non-feasibility to store complete streams (which are considered potentially unbound in size) and as a result, time-
based processing and querying operations are required to be performed as new data items arrive. Specifically, according to
Golab and Ozsu (2003), a data stream is a real-time, continuous, ordered sequence of items whose order is implicit when is
represented by the arrival time or explicit when it is indicated by timestamps.

In data processing and analysis systems, density estimation is a fundamental block, for both, fixed static data-based
and streaming data-based applications. According to the data model paradigm in which they are found, i.e. fixed static
or streaming, two main variants of density estimators can be distinguished: batch-processing techniques and online-
processing methods, respectively. In batch-processing algorithms, the underlying density is obtained by processing all the
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data at the same time. On the other hand, in online-processing methods, data items are processed as they become available
or as they arrive.

The problem of estimating density functions for fixed-static data models has been thoroughly studied in the literature;
see for example Scott (1992), Vannucci (1995) and Silverman (1998). However, for the case of data streams and within the
framework of nonparametric estimators, only the followingpublications have suggestedpossible online solutions: (Wegman
and Marchette, 2003; Procopiuc and Procopiuc, 2005; Heinz and Seeger, 2005; Wegman and Caudle, 2006; Heinz, 2007;
Boedihardjo et al., 2008; Caudle andWegman, 2009). Note that the density estimation problem in the context of data streams
is particularly different from the case of fixed static datamodels in basically three fundamental aspects, all of them implicitly
related to the data streamparadigmpreviously described. First, it considers a limitedmemory storage, whichmeans that the
estimator cannot recompute the entire density using all the data samples available every time newdata items arrive. Second,
the time-based order of data items is relevant in this context, which means that the temporal relation of the data should be
considered by the estimator. Third, the estimation should be fast enough to update the density estimate before new data
arrive. For the three reasons mentioned above, a feasible data streams density estimator should process the incoming data
in a recursive fashion considering the addition/inclusion of new data as well as the discounting of old data.

Wavelet-based estimators belong to the class of orthogonal series estimators, a general class of nonparametric methods
introduced in the literature by Céncov (1962), from which the two most representative and applied algorithms are based
on Fourier and Hermite orthogonal basis functions. The most relevant characteristic of traditional orthogonal estimators is
their computation simplicity. In contrast, theirmajor drawback is their inability to estimate local properties of the underlying
density, since they are based on global basis functions (i.e. Fourier and Hermite basis functions). Since wavelets are localised
basis functions (in time and frequency), this problem is overcomewithwavelet-based estimators, which allow local learning
and local manipulation of the estimated density. Furthermore, wavelet-based estimators offer more flexibility in terms of
convergence and smoothness due to the availability of several families of orthogonal wavelet functions that can be used
in the estimator. In general, as Safavi et al. (2004) pointed out, since wavelet-based estimators inherit the advantages of
wavelets and multiresolution analysis, they are superior to other orthogonal estimators.

Wavelet-based estimators have been intensively investigated in the literature; see for example Vannucci (1995), Donoho
et al. (1996), Herrick et al. (2001) and Safavi et al. (2004), however, most of the techniques available in the literature are
based on a batch-processing concept and just few algorithms, such as the ones investigated by Heinz and Seeger (2005),
Wegman and Caudle (2006) and Caudle and Wegman (2009), are based on the online processing framework. Particularly,
Wegman and Caudle (2006) and Caudle and Wegman (2009) proposed a recursive wavelet-based density estimator that
consists of two main parts. First, an initial estimate of the underlying density is obtained by the use of traditional wavelet
density estimation techniques. Second, this initial estimate is recursively updated as new data arrive considering both the
addition of new data as well as an exponential discounting of the old one. Specifically, the key idea behind the updating
procedure relies on the theoretical fundamental that, in orthogonal series estimators the coefficients can be approximated
by the expectation of the projections of each data item over the orthogonal series. Additionally, in Caudle and Wegman
(2009), a static block discounting is also proposed in which the parameter that controls the block discounting procedure is
determined according to the degree of stationarity of the data using the Kolmogorov–Smirnov test (KS-test). Although this
general technique is simple and effective, it cannot be completely useful in applications inwhich arriving blocks or subsets of
data require the same level of emphasis/importance. Consider, for instance, applications such as environmental monitoring,
where air quality standards consider exposition time to pollutants and ‘‘running’’ estimates are required for some specific
periods of time (e.g.the last 8 and 24 h, depending on the pollutant). On the other hand, the algorithm presented by Heinz
and Seeger (2005) is derived from the framework for maintaining nonparametric estimators over data streams initially
proposed by Blohsfeld et al. (2005) whosemain idea is the initial partition of the data stream into blocks, then for each block,
an estimator is constructed. The next step is the merging of all these ‘‘block’’ estimators in an overall estimator. Finally, this
overall estimator is compressed in order to assure the consumption of a constant amount ofmemory. Themajor drawback of
this algorithm is that, data items cannot be processed as they arrive, in real time fashion, instead, they are handled block by
block, with density estimates available only after each block is completed. Furthermore, this approach does not consider any
discounting procedure for old data, and for that particular reason it is not potentially useful for non-stationary data streams.

A novel online density estimator for non-stationary streaming data is addressed in this paper. The proposed algorithm
is derived from: (1) the well documented wavelet-based density estimation framework for fixed static data studied by
Vannucci (1995), Vidakovic (1999) and Herrick et al. (2001), (2) the recursive estimator proposed by Wegman and Caudle
(2006) and Caudle and Wegman (2009), and (3) data stream model concepts described by Babcock et al. (2002) and Golab
and Ozsu (2003). The approach presented in this paper considers the online updating of the estimator aswell as the selective
reevaluation of its coefficients for new arriving data items. The proposed estimator is fundamentally different with respect
to the methods reported by Wegman and Caudle (2006) and by Caudle and Wegman (2009) by the fact that, it is based on
sliding window concepts suitable for non-stationary streaming data, instead of considering landmarks windows which are
suitable for stationary cases. In that sense, the estimator reported here is a novel estimator whose estimation capabilities
are particularly oriented towards density estimation for non-stationary streaming data.

The contribution of this paper is then twofold. First, the technique proposed for the updating of the estimator coefficients,
which includes both the inclusion/addition of new data items as well as the discount of old information using the concept
of sliding windows, has not been applied in this context before. The second contribution is the optimisation procedure for
the selective reevaluation of the estimator coefficients. Note that none of the work published so far addressing the issue
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of wavelet-based density estimation in data streams has considered the fundamental difference between batch and online
processing in the selective reevaluation of wavelet coefficients. It is important to highlight that the computational cost of
such evaluation could be substantially reduced by considering that some of the estimator coefficients/parameters remain
unaltered from one timestamp to the next one. This consideration, within the framework of wavelet-based orthogonal
estimators, is completely new. Results reported in this work clearly show that the proposed estimator outperforms
the technique proposed by Caudle and Wegman (2009) in the adaptation capability for cases in which the underlying
distribution is changing over time. This improved capability potentially allows the use of this particular density estimation
algorithm in the context of non-stationary applications.

The rest of the paper is organised as follows. In Section 2, orthogonal wavelet decomposition is briefly reviewed from
a very general point of view. Additionally, fundamental concepts behind orthogonal series estimators and wavelet-based
density estimators for static data is also introduced in this section. Afterwards, the algorithmproposed for the online density
estimation is presented in Section 3. Section 4 includes both simulated and real-world data experiments performed to
evaluate the proposed framework and their corresponding results. Finally, in Section 5, the conclusions of this work are
presented.

2. Wavelets and batch-based wavelet density estimation

2.1. Wavelets

Wavelet analysis is a well-established discipline that has been widely applied in a great variety of applications. Among
the most relevant ones, we could cite: data compression, signal filtering and denoising, image processing, as well pattern
recognition and system identification. The basic concept in wavelet transforms, as Bruce et al. (2002) emphasises, is the
projection of data onto a basis of wavelet functions in order to separate fine-scale and large-scale information. Particularly,
data are decomposed into a series of shifted and scaled versions of a mother wavelet function to make possible the analysis
of signals at different scales and resolutions.

In this work, the discrete wavelet transform (DWT) is employed. Its main features can be summarised as follows:
(1) data is separated into wavelet details coefficients (fine-scale information) and approximation coefficients (large-scale
information) by the projection of the data onto an orthogonal basis system; (2) such approximation andwavelet coefficients
include all the information of the original signal. In a formal way, based on the DWT framework, a signal f (x) is decomposed
in an approximation and details to form a multiresolution analysis of the signal as:

f (x) =
−
k

cj0,kφj0,k(x)+
−
j0≤j

−
k

dj,kψj,k(x), j0, j, k ∈ Z, (1)

where cj0,k denote the approximation coefficient at resolution j0, dj,k denotes the wavelet coefficient at resolution j, φj0,k(n)
is a scaling function and ψj,k(n) is a wavelet function at resolution j. The coefficients cj0,k and dj,k are computed according
to:

cj0,k =

f (x), φj0,k(x)


, j0, k ∈ Z, (2)

dj,k =

f (x), ψj,k(x)


, j, k ∈ Z, (3)

where the operator ⟨.⟩ denotes the inner product in the space of square integrable functions L2(R). The dyadic DWT assumes
scaling functions φ and wavelet functions ψ of the form:

φj0,k(x) = 2j0/2φ(2j0x− k), j0, k ∈ Z, (4)

ψj,k(x) = 2j/2ψ(2jx− k), j, k ∈ Z. (5)
Particularly, the process of obtaining the approximation coefficients cj0,k andwavelet coefficients dj,k is called the discrete

wavelet transform, while the process of reconstructing the signal, given such coefficients is named the inverse discrete
wavelet transform (IDWT). In practice, the dyadic DWT can be implemented in a computationally efficient manner via the
dyadic filter tree algorithm proposed by Mallat (1989), that is also referred as Mallat’s cascade algorithm. The basic idea
behind this fast algorithm is to represent the wavelet basis as a set of high-pass and low-pass filters in a filter bank (Percival
and Walden, 2000).

2.2. Orthogonal series density estimators

In simple words, density estimation is the problem of constructing and estimating a probability density function from
some given observed data. Density estimation is a well studied problem for which several solutions have been reported
in the literature. Density estimation techniques can be classified into two main groups: parametric and nonparametric
approaches. Among the latter, kernel estimators, orthogonal estimators and histograms have been the focus of the attention
of themajority of the research community.Wavelet density estimators fall into the class of orthogonal series estimators and
for the sake of completeness, in this section, some fundamental theoretical background of orthogonal series estimators is
briefly reviewed, further details can be found in Vidakovic (1999).



330 E.S. García-Treviño, J.A. Barria / Computational Statistics and Data Analysis 56 (2012) 327–344

According to Céncov (1962), an unknown square integrable density function can be expressed as a convergent series of
orthogonal basis functions:

f (x) =
−

j

bjψj(x), j ∈ J, (6)

whereψj is a complete orthonormal system of basis functions in L2(R), bj is the coefficient of the jth basis function and J is
an appropriate set of indices that belongs to Z. In that context, and considering that f (x) is a density function, Cêncov found
that the coefficient bj can be expressed as an expectation:

bj =

f , bj


=

∫
ψj(x)f (x)dx = E[ψj(X)], j ∈ J. (7)

Consequently, if X1, X2, . . . , Xn are the realisations of a random variable X with an unknown square integrable density
f (x), the jth series coefficient in an orthogonal series estimator can be elegantly approximated by:

b̂j =
1
n

n−
i=0

ψj(Xi), (8)

and the corresponding density by

f̂ (x) =
−

j

b̂jψj(x), j ∈ Z. (9)

2.3. Wavelet-based orthogonal series estimators (batch-processing approach)

Since wavelets are also orthogonal basis functions, wavelet density estimators follow the same concepts described in
Eqs. (8) and (9), however, within the wavelet framework, the density can be represented as an orthogonal series of two
different basis functions: scaling functions φ and wavelet functions ψ . If X1, X2, . . . , Xn are the realisations of a random
variable X with an unknown square integrable density f (x), then the scaling and wavelet coefficients can be approximated
by

ĉj0,k =
1
n

n−
i=0

φj0,k(Xi), j0, k ∈ Z, (10)

d̂j,k =
1
n

n−
i=0

ψj,k(Xi), j, k ∈ Z, (11)

where ĉj0,k and d̂j,k are the approximated or empirical coefficients for the scaling and wavelet functions, respectively.
Following the same concept of Eq. (9), the wavelet density estimate is thus:

f̂ (x) =
−
k

ĉj0,kφj0,k(x)+
j0+J−
j=j0

−
k

d̂j,kψj,k(x) j0, j, k, J ∈ Z (12)

where j0 indicates the coarsest scale or the lowest resolution of analysis, and J refers to the number of decomposition levels.
The rate of convergence of orthogonal series estimators has been shown to be asymptotically optimal (see Hall, 1986 for

further details). Additionally, since wavelet basis functions possess good localisation properties, wavelet-based orthogonal
series also have improved local approximation capabilities. Moreover, the precision of this type of estimators depends on
three aspects: the shape of the density to be estimated, the number of data items considered for the estimation as well as
the number of the decomposition levels in Eq. (12).

In the corresponding literature, different variants of the general estimator described by Eqs. (10)–(12) can be found
(e.g. Masry, 1994; Donoho et al., 1996; Donoho and Johnstone, 1998; Herrick et al., 2001). Specifically, they mainly differ
in two basic aspects. The first is the strategy that they follow to select which of the terms in the series expansion should
be kept, and the second is the way the series coefficients are thresholded. By applying those strategies, the construction of
linear and nonlinear estimators is possible: the former by keeping wavelet coefficients untouched and the latter with soft
or hard coefficients thresholding strategies. Remember that, all these approaches are based on a fixed-static data model
and consequently they address the density estimation problem from a batch processing perspective. Furthermore, since
wavelets are not a positive δ-sequence, density estimates may take negative values in regions where the sample is sparse.
Different solutions for this problem have been reported in the literature (i.e. taking the square root of the density Pinheiro
and Vidakovic, 1997, using non-negative wavelets). A discussion on these procedures is outside of the scope of this paper.
Details can be found in Vidakovic (1999).

Practical implementation
The practical implementation of thewavelet density estimator of Eqs. (10)–(12)makes use of twowell knownalgorithms:

(a) the recursive algorithm introduced by Daubechies and Lagarias (1992), and (b)Mallat’s cascade algorithm (Mallat, 1989).
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The Daubechies–Lagarias algorithm is a numerical method for the calculation of the scaling and wavelet values at a given
point with a predefined precision. This algorithm is necessary since, for most of the compactly supported wavelet families,
both scaling functions φ andwavelet functionsψ have no explicit or closed form representation. On the other hand, Mallat’s
cascade algorithm is a fast and optimised procedure for the implementation of the DWT based on the use of filter banks and
nested spaces. A deep description of those procedures is not necessary for the understanding of the algorithm proposed in
this work. For more details about these two procedures, the reader is referred to the original sources as well as to Vidakovic
(1999).

In broad terms, the implementation of the wavelet-based estimator is performed by choosing in (12) the coarsest
resolution j0 and the number of decomposition levels J , then the scaling coefficients ĉj0,k and the wavelet coefficients d̂j,k for
j ∈ {j0, j0 + 1, . . . , j0 + J} can be obtained by the use of Mallat’s cascade algorithm starting from the high resolution scaling
coefficients ĉJ,k, first obtained by applying the Daubechies–Lagarias algorithm over the original data.

3. Proposed online wavelet-based orthogonal series estimator

The recursive approach proposed in this paper is based on a sliding window that moves forward, replacing old items as
new data items arrive. Note that, according to Babcock et al. (2002), sliding windows are a natural method for the analysis
of data streams with the specific property of emphasising recent data; moreover, they are particularly useful in situations
in which an excerpt of the stream is of interest at any given time (e.g. running hourly and daily data) Golab and Ozsu (2003).

The algorithm proposed considers the online updating of the density estimator as well as the selective reevaluation of
only the meaningful estimator parameters for each arriving data item. For the case of the online implementation of the
estimator, it can be divided in twomajor stages. First, an initial estimation of the density is computed using Eq. (12). Second,
once the initial estimate has been obtained, the density is continuously updated in a recursive fashion as new data items
arrive. In a formal way consider that, in streaming situations, the statistical and probabilistic structural properties of the
data evolve over time. In that context, assume that X1, X2, . . . is an unbounded continuous sequence of data items, where
Xk arrives before the data element Xk+1 and in which the data elements are assumed to be i.i.d. random samples from an
unknown probability density function f (x) that evolves over time. For the initial estimation of the density, consider that
the timestamp is initialised to n = w and an initial estimate f̂w(x) of f (x) is computed in a batch fashion using Eq. (12) and
considering the first w data items X1, X2, . . . , Xw covered by the sliding window of size w. Then, in the updating stage, the
timestamp is increased by one to n = w+1 and thewindow ismoved one step forward, as a new data item arrives. Here, the
initial estimate is updated to obtain the estimate f̂w+1(x) using the elements X2, . . . , Xw+1. Continuing in the same manner,
and generalising, at a particular timestamp n an updated estimate f̂n(x) of the density is obtained considering the sequence
Xn−w+1, . . . , Xn of data items. Note that in its fundamental formulation, the procedure just described considers a window
moving every time a new data item arrives but it could be easily modified and generalised in order to work in situations in
which the obtention of density estimates is required after the arrival of a particular number of data items.

3.1. Recursive updating procedure

Theupdating of the estimator is performedbymeans of an iterative updating process ofwavelet coefficients. In that sense,
the framework proposed is inspired by the work initially reported by Wegman and Marchette (2003), which suggested a
recursive method for updating kernel density estimators. This method was posteriorly adapted by Wegman and Caudle
(2006) and Caudle and Wegman (2009) for its use in wavelet estimators.

3.1.1. Caudle and Wegman’s approach
Specifically, Caudle and Wegman (2009) noted that, in the context of wavelet estimators, the estimator coefficients are

approximated by taking the average of the basis functions evaluated at each data point according to Eqs. (10) and (11). Then,
by considering the recursive implementation of that average, the orthogonal series coefficients can be iteratively updated,
as new data items arrive, according to the equation:

b̂j,n+1 =
n

n+ 1
b̂j,n +

ϕj(Xn+1)

n+ 1
, j, n ∈ N, (13)

where ϕj(Xn+1) either refers to a wavelet ψj,k(x) or a scaling φj,k(x) functions and consequently b̂j,n and b̂j,n+1 refer to their
corresponding coefficients at timestamps n and n + 1, respectively. Note that Eq. (13) is used in the context of landmark
windows (windowswith one fixed endpoint and onemoving endpoint; see Golab andOzsu, 2003). Additionally, if in Eq. (13)
the term θ = n/(n+1) is considered, then (13) can be simply expressed as b̂j,n+1 = θ b̂j,n+(1−θ)ϕj(Xn+1). Then, by choosing
different values of θ , different weighting schemes can be implemented in order to adjust the emphasis or importance of new
data with respect to the old one. It is important to notice that such weighting scheme is not able to assign the same level
of importance to a specific subset of the arriving streaming data (see Fig. 1(a)), and as a result, it is not particularly suitable
for applications which require density estimates for specific blocks of data, for instance, consider the case of environmental
monitoring, in which hourly estimations are continuously needed. Moreover, results reported in Section 4 show that this
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a b

Fig. 1. (a) Weighting schemes and (b) scaling function evaluation for both the estimator of Caudle andWegman (2009) and for the proposed in this work.

scheme does not have good adaptation capabilities in the context of non-stationary scenarios, which means that, if the
underlying density is moderately changing over time, then the estimator will not able to perform the fast tracking of those
changes.

3.1.2. Proposed approach
The recognition of the abovementioned difficulties motivated the updating scheme suggested in Caudle et al. (2011)

whichmakes use of the concept behind Eq. (13) now applied in the context of slidingwindows. Furthermore, in the proposed
algorithm, Eq. (13) is adapted to be employed for both, the recursive addition of newdata aswell as the discounting of the old
one. In its most basic form, and following the notation used in Eq. (13), the proposed updating algorithm can be expressed
by the following equation:

b̂j,n+1 = b̂j,n +
ϕj(Xn+1)

w
−
ϕj(Xn−w+1)

w
, j, n, w ∈ N, (14)

where w is the window size and n denotes the timestamp. Here, Xn+1 is the more recent data item arrived, and Xn−w+1
expresses the oldest data item covered by the sliding window. Note that the first part of Eq. (14), related to the inclusion of
new data items, is similar to the one proposed in (13), but in addition there is a third term that discounts old data. The basic
idea of the proposed updating procedure is then twofold: (a) to incorporate into the approximated wavelet coefficients,
and consequently into the density estimate in general, the contribution of new data items covered by the sliding window;
and (b) to remove from the estimator coefficients calculation the old data items not any longer falling within the range
of the sliding window. In its simplest form, Eq. (14) looks similar to (13). However, it is fundamentally different in its
weighting scheme, which, as it was previously mentioned, assigns the same level of emphasis or importance to the data
covered by the sliding window. This novel assigning method results in improved adaptation capabilities of the estimator.
Furthermore, tomake the proposedmethod suitable for real-time applications, in this paper, we additionally present a novel
optimisation methodology not addressed before in the literature that considers the selective reevaluation of wavelet and
scaling coefficients for arriving data items.

3.2. Selective reevaluation of wavelet coefficients

In this subsection, the proposed updating procedure previously presented is slightly modified in order to reduce the
number of basis functions (scaling andwavelet functions) evaluated by the algorithmevery time a newdata itemarrives. The
aimof thismodification is the optimisation of the computing resources used by the algorithm represented by Eq. (14), for this
reason, the suggested strategy is basically the selective reevaluation/recalculation of just the relevant scaling and wavelet
coefficients (coefficients that change at each particular time step) for every new processed data item. This modification is
justified by the fact that, most of the series coefficients b̂j,n+1’s in Eq. (14) remain unaltered from time n to time n+1, namely,
most of them are equal to b̂j,n’s. Taking into consideration this particular circumstance, inherent to the online estimator,
Eq. (14) can be modified in order to evaluate just the scaling and wavelet functions that change for each timestamp.

Since the selective evaluation method proposed here is based on the effective support of scaling and wavelet functions
at a given particular resolution, the formulation described below applies for compactly supported wavelet functions whose
support is 2N − 1 (e.g. Daubechies and Symlet families) where N is the order of the function. Note that the procedure can
be generalised for other families of compactly supported wavelet functions by considering their corresponding support.
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In a formal way, let φ andψ be the scaling and wavelet functions of the Daubechies or Symlet families of order N whose
support at scale j = 0 is [0, 2N − 1]. Note that, in a strictly theoretical way, the support of the wavelet function ψ is
[−N,N − 1]. However, for its practical implementation it is normally assumed to be the same as its corresponding scaling
function, that is [0, 2N − 1]; see Burrus et al. (1997) and Boggess and Narcowich (2009) for details. In this work, after
following that practical consideration, the support of bothφ andψ can be generalised,within the dyadicwavelet framework,
to any particular resolution j and translation k according to the following expression (Vannucci, 1995):

suppφj,k = suppψj,k = [2−jk, 2−jk+ 2−j(2N − 1)] = [2−jk, 2−j(k+ 2N − 1)]. (15)

For convenience, it is assumed that the random variable X of interest is supported on [0, 1]. Note that in most of the
problems involving density estimation, the random variable X of interest is compactly supported, that is, explicitly defined
over a specific interval. For applications in which wavelet analysis is confined to a specific interval, a common practice to
fix notations and simplify formulations is to assume data to be in the range [0, 1]. In that case, the wavelet basis for L2(R) is
restricted to a basis for L2([0, 1]) (Cohen et al., 1993).

Considering Eq. (15) and taking into account thepractical implementation aspects of traditional batch-processingwavelet
decomposition discussed in the previous section, Eq. (12) can be reduced to:

f̂ (x) =
2j0−

k=−(2N−1)

ĉj0,kφj0,k(x)+
j0+J−
j=j0

2j−
k=−(2N−1)

d̂j,kψj,k(x) j0, j, J, k ∈ Z (16)

where j0 is the lowest or coarsest resolution while J is the number of decomposition levels.
Then, according to Eq. (16), it is clear that, batch-processing wavelet estimators evaluate, at resolution j, 2j

+ 2N ,
basis functions (of either scaling or wavelet functions), each of them corresponding to a particular translation k, namely,
k = −(2N − 1), . . . , 0, . . . , 2j. In that context, Eqs. (13) and (14) update the approximated coefficients, b̂j’s, 2j

+ 2N times
for each decomposition level j every time a new data item arrives by projecting them over each orthogonal base employed.

The selective reevaluation method proposed here modifies Eq. (14) in order to reevaluate at any particular timestamp
only the estimator coefficients whose associated scaling and wavelet functions include the arriving data item within their
support. For the opposite case, in which the arriving data item is outside of the support of the basis functions evaluated,
their corresponding coefficients remain unaltered. The final expression for the updating procedure proposed is expressed
in Eqs. (17)–(19). Notice that, in order to be clearer in the presentation of the selective reevaluation procedure, Eq. (17) has
been split in two equations, one for the addition of new data (18) and other one for the discounting of the old one (19).

b̂j,k,n+1 = b̂j,k,n + b̂additionj,k,n+1 − b̂discountingj,k,n+1 , (17)

with:

b̂additionj,k,n+1 =


ϕj,k(Xn+1)

w
if 2jk ≤ Xn+1 ≤ 2j(k+ 2N − 1),

0 otherwise,
(18)

b̂discountingj,k,n+1 =


ϕj,k(Xn−w+1)

w
if 2jk ≤ Xn−w+1 ≤ 2j(k+ 2N − 1),

0 otherwise,
(19)

where ϕj,k is used to refer to either the wavelet ψj,k(x) or the scaling function φj,k(x) and b̂j,k,n refer to their corresponding
coefficient for timestampn. Additionally,w is thewindowsize andXn+1 andXn−w+1 are themost recent andoldest data items
covered by the sliding window. Note that, since each basis function is defined by both the resolution j and the translation
parameter k, the index khas been included. Furthermore, the proposed selective strategy for updating the coefficients is valid
for both, Daubechies–Lagarias algorithm and Mallat’s cascade algorithm which are the algorithms involved in the practical
implementation of Eq. (12).

An important additional observation is that the proposed estimator does not require an initial estimate computed using
Eq. (12), it can be simply initialised by assuming that each term of the set {X0−w−1, . . . , X0} is equal to zero and b̂j,k,0 = 0.
Pseudo-codes for the three wavelet-based estimators are shown in Algorithms 3.1–3.3. Specifically, Algorithm 3.1 shows
the pseudo-code for the traditional batch estimators and is related to Eq. (16). Algorithm 3.2 corresponds to the estimator
proposed by Caudle and Wegman (2009) and is based on Eq. (13) but in addition, it includes the discounting strategy
explained in Section 3.1.1. Note that in Eq. (13) the translation parameter k is implicit, however in Algorithm 3.2 it is used.
Algorithm 3.3 is the proposed estimator of Eqs. (17)–(19).

3.3. Implementation issues

The proposed updating procedure uses a fixed amount of memory with a buffer size depending on the number of
data items covered by the sliding window no matter whether the data stream is unbounded in size. Regarding theoretical
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criteria for the selection of an appropriate window size, note that the window size is application specific and it should be
selected according to stochastic properties of the data and the specific requirements of the application (e.g. for time-based
applications, it could consider specific minutes, hour or days).

In this paper, three different alternatives for the selection of the window size parameter are suggested. The first one
considers the use of goodness-of-fit tests thoroughly investigated by Stephens (1965, 1970) and more recently by Tygert
(2010), which are based on determining whether a given set of i.i.d. data points come from a specified probability density
function. Within this framework, the most common tests used are the Kolmogorov–Smirnov and Kuiper’s tests that focus
on the size of the discrepancy between the cumulative distribution function of a specified probability density function and
the empirical cumulative distribution function of i.i.d. data.

Specifically, as it is explained by Rohatgi and Saleh (1976), Kuiper’s statistic is a variation of the well-known
Kolmogorov–Smirnov statistic and is defined by:

V = D+ + D− = max
x
(F̂(x)− F(x))+max

x
(F(x)− F̂(x)), (20)

where F and F̂ are the two cumulative distribution functions involved, specifically, F is the true distribution while F̂ is the
estimated one. In Eq. (20), D+ and D− are discrepancy statistics representing the maximum deviation above and below the
two cumulative distribution functions being compared. Here, thewindow sizemay be selected according to a specified value
of Kuiper’s statistic or according to the results obtained from a hypothesis testing operation based on such statistic.

The second alternative comes from the work in the context of kernel density estimation in which the expected L2
risk function defined by the mean integrated squared error (MISE) (Marron and Wand, 1992), is used as the optimality
criterion for the selection of the bandwidth parameter. Hall and Patil (1995) investigated the properties ofMISE in nonlinear,
thresholded, wavelet-based density estimators and derived a formula to describe an asymptotically optimal empirical
bandwidth selection rule. MISE is defined by the following equation:

MISE(h) = E
∫
(F̂n(x; h)− F(x))2dx, (21)

where n is the sample size, h is the bandwidth of the estimator. Note that the sample size n parameter can be interpreted,
in our framework, as the window size, since it indicates the number of samples available (within the sliding window) to
estimate the underlying density.

The third criterion suggested is useful for cases in which the underlying density is completely unknown, and then a
possible solution might be approximating the empirical distribution function of the data with polynomials to a certain
precision or error and then establishing a relationship between the polynomial degree obtained and the window size
required to fit a density function with a smoothness defined by that specific polynomial degree. Future work is intended to
assess a deep investigation of this particular issue in order to introduce a systematic procedure for the selection of this free
parameter.

Algorithm 3.1: Batch-based Wavelet Density Estimator (j0, J, w,Xn = {X1, . . . , Xn})

for n← 0 tow − 1

do



for j← j0 to j0 + J

do



for k←−(2N − 1) to 2j

do



if n = 0

then


b̂j,k,n ← 0
comment: Initialise to zero the basis function’s coefficient

b̂j,k,n+1 ← b̂j,k,n + ϕj,k(Xn)
comment: Then update the corresponding basis function’s coefficient

Algorithm 3.2: Recursive Wavelet Density Estimator (caudle) (j0, J, n, Xn+1)

for j← j0 to j0 + J

do


for k←−(2N − 1) to 2j

do


b̂j,k,n+1 ← n

n+1 b̂j,k,n + (1−
n

n+1 )ϕj,k(Xn+1)

comment: For each new arriving data point evaluate all the basis functions

and update the corresponding coefficients
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Algorithm 3.3: Proposed Recursive Wavelet Density Estimator (j0, J, w, n, Xn+1, Xn−w+1)

for j← j0 to j0 + J

do



for k←−(2N − 1) to 2j

do



if Xn+1 ≥ 2jk and Xn+1 ≤ 2j(k+ 2N − 1)
comment: If the new arriving data point Xn+1 falls within the support of the basis function

then


b̂additionj,k,n+1 ←

ϕj,k(Xn+1)
w

comment: Then update the corresponding basis function’s coefficient

else

badditionj,k,n+1 ← 0

if Xn−w+1 ≥ 2jk and Xn−w+1 ≤ 2j(k+ 2N − 1)
comment: If the oldest data point Xn−w+1 falls within the support of the basis function

then


b̂discountingj,k,n+1 ←

ϕj,k(Xn−w+1)
w

comment: Then update the corresponding basis function’s coefficient

else

b̂discountingj,k,n+1 ← 0

b̂j,k,n+1 ← b̂additionj,k,n+1 − b̂discountingj,k,n+1

Regarding the computational complexity of the algorithm, since Eq. (12) is based on Mallat’s algorithm, the number of
computational operations (floating-point multiplications and additions) is linear with the length of the signal M , with a
relatively small constant of linearity. It can be formally expressed in the following way. Let CDWT be the complexity of a
DWT of a data signal of length M , and considering that, after each scale the algorithm only operates on half of the output
data, then it can be shown that CDWT = O(M) + CDWT(M/2) which gives rise to the solution CDWT = O(M) (see Burrus
et al., 1997 for details). In the proposed selective evaluation procedure, the reduction in the number of computations will
depend on the wavelet basis employed and the support of the corresponding scaling and wavelet functions. For the case of
orthogonal compactly supported wavelets (i.e. Daubechies, Symlets) whose support length is 2N − 1 (with N denoting the
order of thewavelet or scaling function) the number of orthogonal basis evaluated is always equal to 2N−1 for every level of
decomposition j. This means that the computational complexity of the estimator is constant at each level of decomposition
no matter whether a high number of orthogonal basis is used at that particular resolution.

In order to exemplify the method proposed, suppose that it is needed to evaluate the estimator of Eq. (16), for the
data point X = 0.4 only using Symlet scaling functions of order N = 4 with a resolution j = 5. Note that, since we are
interested in scaling functions, then only the first term of Eq. (16) is required, hence j = j0. Batch-based algorithms evaluate
2j
+ 2N = 40 basis functions with the corresponding translation parameters k = −(2N − 1), . . . , 2j

= {−7,−5, . . . , 32}
even when the data point to be evaluated is outside the support of the majority of the translated wavelets evaluated. In
contrast, the algorithm proposed here is able to focus the computation only on all those basis functions whose translation
parameters are meaningful, which are those whose coefficients are different from zero. For example, according to Eq.
(18), they are k = {6, 7, . . . , 12}. Note that for k = 6 and k = 12, the associated supports which are, according to Eq.
(15), equal to [2−5(6), 2−5(6 + 2(4) − 1)] = [0.1875, 0.4063] and [2−5(12), 2−5(12 + 2(4) − 1)] = [0.3750, 0.5938],
respectively, include the data point X = 0.4. Supports for scaling function with translation parameters k = 5 and k = 13
are [2−5(5), 2−5(5 + 2(4) − 1)] = [0.1563, 0.3750] and [2−5(13), 2−5(13 + 2(4) − 1)] = [0.4063, 0.6250], which
in contrast do not include the data point we are interested in, i.e., X = 0.4. The proposed strategy for the evaluation
of scaling and wavelet coefficients avoids wasting computing resources on the evaluation of the remaining 33 wavelets,
k = {−7, . . . , 5, 13, . . . , 32}, whose corresponding coefficients will be zero after the evaluation. The difference between
traditional coefficients evaluation schemeand theproposedprocedure canbe clearly observed in Fig. 1(b). The generalisation
of the proposed estimator to higher dimensions can be found in the Appendix.

Concerning improvements in computational speed, the proposed estimator offers a notable speed advantage for
problems involvingmediumand largewindowsizes, as can benoted in Fig. 2. The computer system thatwas used to generate
the result reported in Fig. 2 was an Intel Core2 Duo CPU E6550, 2 GB of RAM, running on windows XP and the simulation
environment is MATLAB R2010b. Specifically, we define the computation time ratio (used in Fig. 2(c)) as the number of
times that the proposed algorithm is faster that its batch processing counterpart that is the computational time for batch
algorithm divided by the computational time of the proposed approach. To exemplify the speed improvements consider,
for instance, that a given application requires the online density estimation with a window size of 10,000 data samples,
then, according to Fig. 2(c), the proposed estimator is approximately 5000 times faster than its batch-processing estimator
counterpart. Note that, from the perspective of computational time, the approach reported by Caudle and Wegman (2009)
is still a batch-based estimator that evaluates at each timestamp all the estimator coefficients even when this is done using
a recursive scheme.

Note that the computation time ratio between the proposed technique against the batch-based approach increases
exponentially as the window size increases. Also note that computation time of the proposed estimator is independent
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Fig. 2. Computation time for batch (a) and proposed (b) estimators and computation time ratio (c).

Fig. 3. Concatenated data stream used for the evaluation.

of the window size, since it only involves the evaluation of the newest and oldest data points covered by the sliding
window.

4. Algorithm assessment

4.1. Simulation experiment

In order to compare the performance of the proposed online density estimator, initiallywe construct simulated streaming
data using three different mixture distributions considering 4000, 2000 and 2000 samples from them, respectively.
Note that, since the benchmark estimator (the approach proposed by Caudle and Wegman, 2009) used for performance
comparisons requires an initial estimate of the underlying density, it is necessary to increase the number of timestamps
evaluated for the first mixture distribution. One simulated data stream with 8000 samples is constructed by concatenating
samples from the three mixture distribution (see Fig. 3). Then, seven scenarios are evaluated considering windows sizes of
200, 400, 800, 1000, 1200, 1600, and 2000 data items. Table 1 shows the three different mixture distributions used in the
simulations and its corresponding timestamps in the concatenated data stream.

For the seven scenarios, the experiment consists of online density estimation of the concatenated data stream and the
evaluation of the mean square error of the estimates at three particular timestamps (i.e. 4000, 6000, and 8000) in which the
sliding window is covering samples from just one of the underlying distributions. The experiment is repeated 1000 times
and the average of the mean square error (MSE) between the true underlying density and the estimated one for the 1000
cases is recorded. The averaged MSE’s for the 1000 experiments at the selected timestamps are shown in Tables 2 and 3, for
the estimator of Caudle and Wegman (2009) and for the algorithm proposed in this work, respectively. For the evaluation,
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Table 1
Gaussian mixtures for the two scenarios evaluated.

Timestamp Gaussian mixture (with N(µ, σ 2))

1 1–4000 N(0.4, 0.004),N(0.5, 0.02) and N(0.7, 0.01)with mixture parameters 0.3, 0.3, 0.4, respectively
2 4001–6000 N(0.3, 0.01),N(0.4, 0.03) and N(0.75, 0.003)with mixture parameters 0.4, 0.3, 0.3, respectively
3 6001–8000 N(0.4, 0.05),N(0.4, 0.001),N(0.2, 0.00003),N(0.53, 0.00005) and N(0.7, 0.007)with mixture parameters 0.3,

0.15, 0.025, 0.025 and 0.5 respectively

Table 2
Average of the MSE for the 1000 experiments for the estimator proposed in Caudle and Wegman (2009).

Evaluation results θ value
Timestamp 0.990 0.993 0.995 0.997 0.999 0.9995 0.9999

4000 5.05× 10−8 4.67× 10−8 4.36× 10−8 3.90× 10−8 3.37× 10−8 3.71× 10−8 5.26× 10−8

6000 39.9× 10−8 38.9× 10−8 39.4× 10−8 43.0× 10−8 64.7× 10−8 92.7× 10−8 185× 10−8

8000 137× 10−8 140× 10−8 143× 10−8 144× 10−8 133× 10−8 118× 10−8 93.5× 10−8

Table 3
Average of the MSE for the 1000 experiments for the proposed estimator.

Evaluation results Window size
Timestamp 200 400 800 1000 1200 1600 2000

4000 27.6× 10−8 14.2× 10−8 7.76× 10−8 6.44× 10−8 5.46× 10−8 4.35× 10−8 3.62× 10−8

6000 28.8× 10−8 15.5× 10−8 8.39× 10−8 7.06× 10−8 6.16× 10−8 5.03× 10−8 4.37× 10−8

8000 43.6× 10−8 28.8× 10−8 22.0× 10−8 20.5× 10−8 19.5× 10−8 18.3× 10−8 17.6× 10−8

the wavelet used in the estimator is the daubechies 4 (db4) from the family of orthogonal Daubechies wavelets, with the
initial resolution set to j0 = 4 and the number of decomposition levels J = 0.

As it is shown in Tables 2 and 3, for the estimates at timestamps 6000 and 8000 for the seven cases, the proposed approach
outperforms the method suggested by Caudle and Wegman (2009). These results led us to conclude that the proposed
algorithm has better estimation capabilities in non-stationary contexts in which the underlying density is changing over
time. This result is supported by the fact that the proposed algorithm is based on sliding window concepts which allow full
control of the emphasis/importance assigned to recent data, and as a consequence, its corresponding estimations are suitable
to track changes in the underlying density function. In contrast, themethod reported byCaudle andWegman (2009),which is
based on landmark windows, cannot properly manage the importance assigned to new data. The second observation is that,
for the proposed approach, the error in the estimation decreases as the size of thewindow increases, due to a higher number
of samples that are considered in the computation of the estimate. Also note that, in (Table 2), the estimator suggested by
Caudle and Wegman (2009) presents the lowest mean square error for the timestamp 4000 with θ = 0.999. The reason
for this is that more data items are available for the estimation and Caudle’s estimator, which is based on an exponential
formulation, can include all of them for the computation of the estimate. In contrast, the number of data items used in the
proposed sliding window approach is always fixed, with a maximum size of 2000 items for this example. It is important to
note that, since an initial estimation based on a batch processing concept is required for both algorithms, the first mixture
distribution consisted of 4000 data items, 2000 more than the second and third mixtures. Fig. 4(a) and (b) graphically show
the results of one of the experiments, for the method reported by Caudle andWegman (2009) and for the one introduced in
this work, respectively. Additionally, it is important to take a closer look at the estimates when the sliding window is at the
transition from a given density to another. This fact is important because it is directly related to the ability of the estimator
to track changes in the underlying density. In Fig. 4(a) and (b), the density estimates reported for timestamps 6000 and
8000 clearly show the improved tracking capability of the reported approach, which adapts faster to the second and third
underlying densities.

In order to evaluate, at any particular timestamp, the density estimates similarity/discrepancy with respect to the true
underlying density or densities involved, Kuiper’s statistic is analysed. Note that, in this context, a larger value of Kuiper’s
statistic V indicates larger discrepancy.

The experiment then involved obtaining Kuiper’s statistic between the estimated density and the three mixture
distributions of Table 1, for timestamps 2000–8000, and for both, the method suggested by Caudle and Wegman (2009)
and the proposed estimator. The corresponding results are depicted in Fig. 5(a) and (b), respectively, in which resulting
estimations are compared to the ideal situation that considers Kuiper’s statistic among the underlyingmixture distributions
of Table 1.

Results from Tables 2 and 3 are confirmed by Fig. 5(a) and (b). Note that, for the method proposed, Kuiper’s statistics
for the three window sizes plotted (Fig. 5) are more sensitive with respect to the changes in the three underlying mixture
distributions and, in that sense, the estimator increases its sensitivity to track changes in the underlying density as the
size of the windows is decreased. On the other hand, for the estimator reported by Caudle and Wegman (2009), Kuiper’s
statistic shows that, for the three values of θ employed (which are the representative ones from Table 2), the fast adaptation



338 E.S. García-Treviño, J.A. Barria / Computational Statistics and Data Analysis 56 (2012) 327–344

a b

Fig. 4. Density estimation at timestamp 4000, 6000 and 8000 for (a) method reported by Caudle and Wegman (2009) and (b) for the proposed one.

a b

Fig. 5. Kuiper’s statistics from timestamp 2000–8000 using different parameters. (a) Caudle and Wegman (2009) method (b) proposed method.

to changes in the underlying density is not possible. An important consequence of this fact is that, such an estimator is
not suitable for moderately non-stationary scenarios. Note that, even when adjusting the value of the parameter θ , it is
difficult to find an optimal balance between the adaptation and accuracy capabilities of the estimator. In contrast, according
to results of Table 3 and Fig. 5, this problem is overcome in the proposed approach since the trade-off between the ability to
track density changes and the precision of the estimation is controlled by the window size. The criterion for the selection of
the window size is application specific, and in that sense, it can be selected according to which capability is more important
in the application: (a) the sensitivity to adapt to new data or (b) the precision in the estimation. A short window is able to
capture fast changes in the data, while a large window is suitable for a more precise estimation of the underlying density.

A relevant consideration for the density estimator presented in this work is that even though all data items covered by
the sliding window are not processed, every time a new data item arrives to recompute the density estimate, they are still
needed to be stored, and in that sense, as the size of the window increases, the storage required also increases. Additionally,
regarding the convergence and precision of the procedure, it follows the same concepts discussed for its counterpart, the
batch-based wavelet estimator, but it is important to highlight the fact that in the proposed case, the number of data items
covered by the sliding window is the fundamental aspect that predefines the precision of the estimates.

Details concerning the interpretation of the relative values for Kuiper’s statistics V of Fig. 5 are shown in Tables 4 and 5,
where the averaged value for V for density estimates at timestamps 1–4000, 4001–6000 and 6001–8000 are presented.
Note that, ideal values for V are shown within square brackets while the differences in percentage between V for the
alternative and null hypothesis divided by the ideal value of V for the alternative hypothesis use round brackets. In our case,
the null hypothesis corresponds to the situation in which F̂(x) is drawn from the underlying cumulative distribution F(x)
from Eq. (20). For example, ideally V with the underlying density F(x) of Mixture 1 should be zero for the null hypothesis,
that is, for timestamps 1–4000. On the contrary, V with F(x) of Mixture 1 should be substantially greater than zero for
the alternative hypothesis, ideally V = 0.3212 for timestamps 4001–6000 and V = 0.1726 for timestamps 6001–8000,
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Table 4
Averaged Kuiper’s statistic V for Caudle and Wegman (2009).

θ 0.9999 0.9990 0.9900
Timestamps 1–4000 4001–6000 6001–8000 1–4000 4001–6000 6001–8000 1–4000 4001–6000 6001–8000

F(x) of mixture 1 0.0329 0.0471 0.0610 0.0179 0.0739 0.1187 0.0266 0.1138 0.1684
[0] [0.3212] [0.1726] [0] [0.3212] [0.1726] [0] [0.3212] [0.1726]
– (4.43%) (16.29%) – (17.44%) (58.41%) – (27.17%) (82.18%)

F(x) of mixture 2 0.2817 0.2885 0.2646 0.2322 0.2496 0.2044 0.2233 0.2145 0.1678
[0.3212] [0] [0.2565] [0.3212] [0] [0.2565] [0.3212] [0] [0.2565]
(2.10%) – (9.31%) (5.39%) – (17.60%) (2.76%) – (18.20%)

F(x) of mixture 3 0.1704 0.1859 0.1702 0.1379 0.1727 0.1517 0.1265 0.1491 0.1398
[0.1726] [0.2565] [0] [0.1726] [0.2565] [0] [0.1726] [0.2565] [0]
(0.13%) (6.10%) – (8.02%) (8.18%) – (7.67%) (3.63%) –

Table 5
Averaged Kuiper’s statistic V for the proposed estimator.

w 200 400 800
Timestamps 1–4000 4001–6000 6001–8000 1–4000 4001–6000 6001–8000 1–4000 4001–6000 6001–8000

F(x) of mixture 1 0.0413 0.2869 0.2096 0.0234 0.2364 0.2178 0.0095 0.1628 0.2357
[0] [0.3212] [0.1726] [0] [0.3212] [0.1726] [0] [0.3212] [0.1726]
– (76.48%) (97.54%) – (66.30%) (112.61%) – (47.75%) (131.08%)

F(x) of mixture 2 0.2855 0.0808 0.2456 0.2363 0.1054 0.2045 0.1568 0.1642 0.1455
[0.3212] [0] [0.2565] [0.3212] [0] [0.2565] [0.3212] [0] [0.2565]
(63.74%) – (64.28%) (40.77%) – (38.65%) (2.32%) – (7.28%)

F(x) of mixture 3 0.1619 0.2339 0.0730 0.1342 0.2063 0.0884 0.0892 0.1769 0.1331
[0.1726] [0.2565] [0] [0.1726] [0.2565] [0] [0.1726] [0.2565] [0]
(51.53%) (62.76%) – (26.54%) (45.97%) – (25.43%) (17.09%) –

to signal the difference between the empirical cumulative distribution of the data points and the underlying cumulative
distribution F(x) of Eq. (20). In order to show how the percentage of discrepancy is calculated, consider for instance that
F(x) is related to Mixture 1 and the proposed estimator is working with a window size of 200, then the percentage of
discrepancy for timestamps 4001–6000 is (0.2869− 0.0413)/0.3212 ∗ 100 = 76.48% while for timestamps 6001–8000 is
(0.2096− 0.0413)/0.1726 ∗ 100 = 97.54%.

Regarding the percentage of discrepancy between alternative hypothesiswith respect to the null hypothesis, note that, in
general, their values (numbers within round brackets) are larger for the proposed estimator than for the approach reported
by Caudle and Wegman (2009), except for the value obtained for timestamps 1–4000 with a window size of 800. Also note
that, as the window size increases, the discrepancy between an alternative hypothesis with respect to the null hypothesis
decreases. According to results reported in Tables 4 and 5, it is clear that there is a direct relationship between the window
size of the estimator and the confidence to accept or reject a specific hypothesis. For this reason, in this paper, we are
suggesting the use of Kuiper’s statistic as a criterion for the selection of the window size parameter. More insights about
how to solve this issue can be considered by analysing Fig. 6 where the values for Kuiper’s statistic and for theMISE criterion
evaluated over 100 trials are depicted.

The first observation about Fig. 6 is that both criteria, Kuiper’s statistic andMISE, decrease asymptotically as the window
size increases. Specifically, note that in Fig. 6(a) a window size of 500 (associated to point 1 in Fig. 6(a) would be suitable for
Gaussianmixtures 1 and 2 if Kuiper’s statistic V is expected to be 0.04 (see point 1 in Fig. 6(a)). On the other hand, a window
size of 700 would fit for more complex mixtures like the Gaussian mixture 3 and the same expected V value (see point 2 in
Fig. 6(a)). Regarding Fig. 6(b), if a MISE of 0.4 × 10−4 is specified, then a window size equal or larger than 300 data items
would be appropriate for problems involving underlying densities such as the Gaussian mixture 1 or Gaussian mixture 2
(see point 1 in Fig. 6(b)). On the contrary, for cases in which the underlying density is similar to the more complex Gaussian
mixture 3, then a proper window size may be 1000 data items (see point 1 in Fig. 6(b)).

4.2. Real-world data experiment: air pollution monitoring

In this subsection, the proposed estimator is tested using real-world data in the context of air pollutionmonitoring in the
city of London, United Kingdom. The data used for the following experiment is publicly available and can be obtained from
the London Air Quality Monitoring Network, LAQN (2010). The air pollution assessment is particularly important in urban
environments, in which the air quality problem has become a severe and urgent issue that have a substantial impact on
urban liveability and economic productivity. In that sense, the UK Government has established ‘‘Air Quality Standards’’ and
‘‘Air Quality Bands’’ for each of the major air pollutants (Sulphur Dioxide, Ozone, Carbon Monoxide, Nitrogen Dioxide and
PM10 Particles) in order to have some benchmarks against which air pollution levels can be compared. As they are defined
by LAQN (2010), air quality standards are set at a concentration, measured over a given time period, belowwhich the effects
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Fig. 6. Averaged Kuiper’s statistic and averaged MISE over 100 trials.

Table 6
Air pollution bands and their corresponding thresholds, LAQN (2010).

Description Low Moderate High Very high

Ozone (ppb, hourly or 8 h running average) <50 S 50–89 I 90–179 A ⩾ 180
PM10 Particles (µg m−3 , 24 h running average) <63 S 63–94 I 95–127 A ⩾ 128

of pollution levels are considered acceptable for human health and for the environment. With respect to air pollution bands,
pollution levels are classified into bands with the purpose of serving as a tool to help the public assess the possible health
impacts of pollution above certain thresholds; see LAQN (2010) for details.

In this work, the attention is specifically focused onOzone and PM10 particles. The reason for this choice is based on, first,
the corresponding air quality standard and, second, on the availability of the data. Table 6 shows the relationship between
the Air Pollution Bands and their corresponding thresholds for the two pollutants evaluated in the experiment. The first
of these thresholds, is the ‘‘Standard Threshold’’ (S), which is based on the air quality standard for each pollutant. Further
thresholds are the ‘‘Information’’ (I) and ‘‘Alert’’ (A) levels that are in line with EC directives on air quality. According to
LAQN (2010), any concentration below the Standard threshold is described as a ‘‘low air pollution scenario’’ while a level
between the Standard and Information thresholds is described as ‘‘moderate’’, in the sameway, concentrations between the
Information andAlert thresholds, and above theAlert threshold are denoted as ‘‘high’’ and ‘‘very high’’ air pollution scenarios,
respectively. It is important to notice that, the time taken for exposure to a pollutant to cause adverse health effects varies
from pollutant to pollutant, and in that sense, the times over which concentrations are evaluated are different. For Ozone,
the maximum of the 8 h running and hourly mean is used to calculate the index value (Note that for the experiment, just
the 8 h running average is used). In contrast, for PM10 particles the mean of 24 h running is considered. Additionally, note
that the units for these two pollutants are different, Ozone is measured in points per billion (ppb) while PM10 particles in
µg m−3.

The experiment involved testing the discriminative capability of the estimator under different air quality bands over
one year of data for both PM10 particles and Ozone. Specifically, the selected sites were North Kensington (for Ozone)
and Cromwell Road (for PM10) that are two central locations in the city both inside the Royal Borough of Kensington and
Chelsea. Additionally, the year 2006 is considered for Ozone while the year 2008 for PM10 particles both based on the fact
that data related to those years are fully ratified and, in those years at least three of the air pollution scenarios previously
described (i.e. low, moderate and high) were present. Fig. 7(a) and (b) show the data used for the experiment as well as their
corresponding air quality standard and thresholds (dotted lines). It is important to mention that the sampling period for the
data is 15 min and there are some missing information for the case of Ozone as it can be appreciated in Fig. 7(b).

The issue of computing density estimates withmissing data items is directly related to the problem of density estimation
with decreasingwindow sizewhichwas shown in Fig. 6(a). Depending on the complexity of the underlying density, reducing
the number of data items available for the density estimation procedure impacts the precision of the estimate. The estimator
design should take into account a certain margin of error in the estimate, to make it able to deal with a predefined amount
of missing data. For our particular experiment, regions with missing data items covering more than the 5% of the window
size are not considered for computation of the estimate (e.g. most of the month April 2008 for the case of Ozone) while
regions with less than that percentage of missing data are computed in a normal way. Note that, for the case of the proposed
estimator, when a new arriving data item is missing, the estimator coefficients b̂j,k,n+1 of Eq. (17) at timestamp n+ 1 is not
modified and then is equal to b̂j,k,n. The same strategy is followed for discounting the missing data.

For the experiment, Kuiper’s statistic defined in Eq. (20) and previously used for simulated data is also employed.
Specifically, first, the underlying probability density function of the pollutants for the years described are obtained in an
online and recursive fashion. Then, for each pollutant, densities corresponding to the same air quality bands (i.e. low,
moderate and high) are grouped and averaged. Finally, the corresponding CDF’s are calculated and Kuiper’s statistic is
applied among them. For the proposed estimator, only one window size was evaluated for each pollutant based on the
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Fig. 7. (a) PM10 Particles concentrations for the whole year 2008 and their corresponding 24 h running averages at Cromwell Road’s air pollution
monitoring station; (b) Ozone concentrations for the whole year 2008 and their corresponding 8 h running averages at North Kensington’s air pollution
monitoring station, LAQN (2010).

(a) PM10 2008: (I) Proposed approach with a window size
equal to 96 data items, (II)–(IV) Caudle and Wegman (2009)
method using different θ values.

(b) Ozone 2006: (I) Proposed approach with a window size
equal to 326 data items, (II)–(IV) Caudle and Wegman (2009)
method using different θ values.

Fig. 8. Averaged cumulative density functions for low, moderate and high pollution scenarios.

air quality standard i.e. 32 data items for Ozone and 96 items for PM10, corresponding to 8 h and 24 h, respectively. In
contrast, for the benchmark estimator reported by Caudle andWegman (2009), three different values of theta are evaluated,
i.e. 0.8, 0.99 and 0.999, considering the previous evaluation for simulated data. The experiment results are shown in Fig. 8(a)
and (b) and presented in Table 7, where the label ‘‘low–moderate’’ is related to Kuiper’s statistic between the low air
pollution scenarios CDF and the moderate one. In that sense, labels ‘‘moderate–high’’ and ‘‘low–high’’ indicate Kuiper’s
statistic betweenmoderate and high, and low and high air pollution scenarios, respectively. It is important to point out that
the higher the value of Kuiper’s statistic,the higher the difference and discrimination between densities from different air
quality scenarios i.e. low, moderate and high. It can be noticed form Fig. 8(a) and (b) and Table 7 that the density estimation
obtained with the proposed recursive approach have higher discrimination capabilities in terms of Kuiper’s statistic and in
that sense the estimator is able to clearly distinguish between different air pollution scenarios. Furthermore, the proposed
estimator opens the possibility to introduce more robust air quality standards or strategies due to the fact that a probability
density function offers more insights about the process or system under analysis than a single mean value.

One of the advantages of the proposed estimation technique is the fact that, in the particular context of air quality
assessment the time frame is well defined. Remember that ‘‘air quality standards’’ consider not only concentration values,
but also the persistence of pollution levels over a fixed and well defined period of time, e.g. 8 h for the case of Ozone and
24 h for PM10 particles. In contrast to the estimator introduced by Caudle andWegman (2009) in which theta values adjust
the relevance balance between old and new data, the proposed approach can estimate densities for a fixed period of time in
which data within a period of time require the same level of importance. Furthermore, the proposed approach has shown
to be particularly suitable for applications involving running averages, like the air pollution context.
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Table 7
Kuiper’s statistic among different air pollution scenarios.

Evaluation results Kuiper’s statistic
Pollutant Method Low–Moderate Moderate–High Low–High

Ozone Proposed (window= 32) 0.5223 0.5113 0.7886
Caudle (θ = 0.8) 0.1716 0.1209 0.2250
Caudle (θ = 0.99) 0.1222 0.0769 0.1771
Caudle (θ = 0.999) 0.0780 0.0607 0.1201

PM10 Proposed (window= 96) 0.7296 0.4804 0.8658
Caudle (θ = 0.8) 0.1477 0.0944 0.2332
Caudle (θ = 0.99) 0.0422 0.0653 0.0632
Caudle (θ = 0.999) 0.0766 0.0301 0.0577

5. Final remarks

In recent years, there has been an important emergence of applications involving streaming data. For these applications,
an important issue to be addressed is the estimation of the underlying probability density of the data. In this paper, the
problem of density estimation in the context of data streams is investigated following the concept of sliding windows and
wavelet-based orthogonal series estimators. In that sense, a novel online algorithm for density estimation of data streams is
proposedwhich incorporates a selective reevaluation procedure for the updating of estimator coefficients. The experimental
results show that the method proposed is suitable for non-stationary applications where the corresponding probability
density function is changing over time as well as for cases involving running average-based metrics. In such contexts,
it outperforms recent solutions for density estimation for streaming data. Furthermore, the method proposed has good
adaptation capabilities and it requires a fixed amount memory.

Future work will be focused on testing the algorithm in other real world data streams applications. Additionally, since
the proposed method is able to track the evolution of a given density, future work will also investigate the suitability of the
framework in online anomaly detection applications.
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Appendix. Extension to higher dimensions

In this section, the proposed recursive wavelet density estimator is extended to higher dimensions. For that purpose,
both the construction of multidimensional multiresolution analysis and their corresponding multidimensional wavelets is
briefly presented following the concept of separable multiresolution approximations. Details can be found in Mallat (1989),
Ogden (1997) and Safavi et al. (2004). In this approach, the one-dimensional multiresolution analysis is extended to an
m-dimensional multiresolution analysis by defining the m-dimensional vector space Vm

j as the tensor power of its one-
dimensional counterpart Vj:

Vm
j = V⊗mj = Vj ⊗ · · · ⊗ Vj  

m

, j,m ∈ Z, (A.1)

where ⊗ denotes tensor product and the subindex j refers to the resolution. In addition, Vm
j satisfies a m-dimensional

multiresolution ladder in L2(Rm),

. . . ⊂ Vm
−2 ⊂ Vm

−1 ⊂ Vm
0 ⊂ Vm

1 ⊂ Vm
2 . . . (A.2)

with

∩j∈Z Vm
j = {0}; ∪j∈Z Vm

j = L2(Rm). (A.3)

Eqs. (A.2) and (A.3) imply that the sequence of vector spaces Vm
j forms a multiresolution approximation of the space

L2(Rm) if and only if Vj is a multiresolution approximation of L2(R). In that sense, the basis functions for the vector space Vm
j

are defined by:

Φm
j,k1,k2,...,km(x1, x2, . . . , xm) = φj,k1(x1)φj,k2(x2) . . . φj,km(xm)

= 2mj/2Φ(2jx1 − k1, 2jx2 − k2, . . . , 2jxm − km), (A.4)

where φj,ki(xi) is the one-dimensional scaling function associated to the vector space Vj, and orthonormal basis for Vm
j is

given by {Φm
j,k1,k2,...,km

(x1, x2, . . . , xm), j, k1, k2, . . . , km ∈ Z}. Additionally, recalling that, in the one-dimensional case, the
complementary vector space Wj represents the detail signal between successive approximations Vj+1 = Vj ⊕Wj, then, the
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m-dimensional vector space Vm
j+1 can be expressed as:

Vm
j+1 = V⊗mj+1 = Vj+1 ⊗ · · · ⊗ Vj+1  

m

= (Vj ⊕Wj)⊗ · · · ⊗ (Vj ⊕Wj)  
m

= Vm
j ⊕Wm

j , j,m ∈ Z, (A.5)

whereWm
j is the orthogonal complement of Vm

j in Vm
j+1. The detail spaceW

m
j consists of 2m−1 orthogonal subspaces whose

m-dimensional basis functions are given by combinations of tensor products between the one-dimensional approximation
and detail spaces, Vj and Wj, respectively. The corresponding basis functions are then:

Ψ
m,1
j,k1,k2,...,km

(x1, x2, . . . , xm) = φj,k1(x1)ψj,k2(x2) . . . ψj,km(xm),

Ψ
m,2
j,k1,k2,...,km

(x1, x2, . . . , xm) = ψj,k1(x1)φj,k2(x2) . . . ψj,km(xm), (A.6)

...

Ψ
m,2m−1
j,k1,k2,...,km

(x1, x2, . . . , xm) = ψj,k1(x1)ψj,k2(x2)ψj,km(xm),

by considering p = {1, 2, . . . , 2m− 1}, Eq. (A.6) can be shortly expressed as:

Ψ
m,p
j,k1,k2,...,km

(x1, x2, . . . , xm) = 2mj/2Ψ p(2jx1 − k1, 2jx2 − k2, . . . , 2jxm − km, ), (A.7)

where the set {Ψ m,p
j,k1,k2,...,km

(x1, x2, . . . , xm), j, k1, k2, . . . , km ∈ Z} constitutes an orthonormal basis forWm
j in L2(Rm). Based

on the above m-dimensional multiresolution analysis, and defining m-dimensional random variable X = [X1, X2, . . . , Xm],
then them-dimensional version of the batch-processing based wavelet density estimator of Eq. (12) is then:

f̂ (x1, x2, . . . , xm) =
−
kh

ĉj0,khΦ
m
j0,kh(x1, x2, . . . , xm)+

−
p

j=j0+J−
j=j0

≤ j
−
kh

d̂pj,khΨ
m,p
j,kh (x1, x2, . . . , xm), (A.8)

where, for simplification purposes, h = {1, 2, . . . ,m} and then kh = {k1, k2, . . . , km}. Following Eqs. (10) and (11), the
m-dimensional extension for the approximation of the scaling and wavelet coefficients is given by:

ĉj0,kh =
1
n

n−
i=0

Φm
j0,kh(X

i
1, X

i
2, . . . , X

i
m), j0 ∈ Z; kh ∈ Zm, (A.9)

and

d̂1j,kh =
1
n

n−
i=0

Ψ
m,1
j,kh (X

i
1, X

i
2, . . . , X

i
m),

d̂2j,kh =
1
n

n−
i=0

Ψ
m,2
j,kh (X

i
1, X

i
2, . . . , X

i
m),

...

d̂2m−1j,kh =
1
n

n−
i=0

Ψ
m,2m−1
j,kh (X i

1, X
i
2, . . . , X

i
m),

(A.10)

where ĉj0,kh and d̂1j,kh , d̂
2
j,kh , . . . , d̂

2m−1
j,kh are the approximated coefficients for the scaling and wavelet functions, respectively.

Finally, the recursive updating of the estimator coefficients of Eq. (17), can be extended for m-dimension according to the
following equation:

b̂j,kh,n+1 = b̂j,kh,n + b̂additionj,kh,n+1 − b̂discountingj,kh,n+1 , (A.11)

with

b̂additionj,kh,n+1 =



ϕj,kh(X
n+1
1 , Xn+1

2 , . . . , Xn+1
m )

w
; if 2jk1 ≤ Xn+1

1 ≤ 2j(k1 + 2N − 1),

and 2jk2 ≤ Xn+1
2 ≤ 2j(k2 + 2N − 1),

...

and 2jkm ≤ Xn+1
m ≤ 2j(km + 2N − 1),

0; otherwise

(A.12)
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and

b̂discountingj,kh,n+1 =



ϕj,kh(X
n−w+1
1 , Xn−w+1

2 , . . . , Xn−w+1
m )

w
; if 2jk1 ≤ Xn−w+1

1 ≤ 2j(k1 + 2N − 1),

and 2jk2 ≤ Xn−w+1
2 ≤ 2j(k2 + 2N − 1),

...

and 2jkm ≤ Xn−w+1
m ≤ 2j(km + 2N − 1),

0; otherwise

(A.13)

where ϕj,kh is used to refer to either the m-dimensional wavelet Ψ m,p
j,kh (x) or its corresponding m-dimensional scaling

function Φm
j,kh(x) and b̂j,kh,n refer to their corresponding coefficient for the timestamp n. Additionally, w is the size of a

m-dimensional sliding window, where Xn+1
1 , Xn+1

2 , . . . , Xn+1
m and Xn−w+1

1 , Xn−w+1
2 , . . . , Xn−w+1

m are the most recent and
oldestm-dimensional data items covered by the sliding window.
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